<u>CHRISTOPH BERG</u>¹, NINA IHLING¹, JOCHEN BÜCHS¹

COMBINATION OF MULTIVARIATE DATA ANALYSIS AND 2D-FLUORESCENCE

SPECTROSCOPY IN HIGH-THROUGHPUT CULTIVATION EXPERIMENTS

MOTIVATION

- High dimensional data from fluorescence and scattered light measurements of bioprocesses demand advanced data processing techniques (PCA, PLS)
- Establishment of both data processing and data selection workflows for batch cultivations in high-throughput experiments needed

EXPERIMENTAL SETUP

48-well microbioreactor

X-Y positioning device

Orbital shaker

Evaluation of workflow for cultivation of *H. polymorpha* under phosphate limitation

RESULTING SPECTROSCOPICAL 2D-DATA

Figure 2: 2D-spectra from cultivation of *H. polymorpha* expressing GFP under phosphate-limitation^[a] Cultivation conditions: 48-well microtiter plate, V_L = 800 µl, T= 30 °C, n= 1000 rpm, d₀= 3 mm,

RESULTS AND DISCUSSION

Figure 1: Schematic setup implementing 2D-spectroscopy in a 48-well microtiter plate^[b] Wavelength resolution: Excitation= 10 nm, Emission= 0.2 nm, Temporal resolution= 30 min.

Partial least square regression (supervised) Glycerol best . Model building by varying #Wells and #PCs for calibration . Ranking of all possible calibration sets according to Root Mean Square Error (RMSE)

Figure 3: Scores of 2D Spectra A, B) including scattered light or C, D) excluding scattered light over cultivation time after applying principal component analysis on well-resolved data.

- PCA results vary depending on input data set:
- Results including scattered light: mostly affected by backscattered light
- **Results excluding scattered light:** only affected by fluorescing compounds
- Data de-correlation facilitates the interpretation of online signals
- \rightarrow *i.e.* PC2 qualitatively helps identifying limitation conditions

		-	Cult	ivati	on tin	ne	[h]					Сι	Iltiv	vatio	on tir	ne	[h]
Figure	6:	Calibr	ation	and	predic	tion	of	A ,	B)	Glyce	erol	and	С,	D)	pH-va	alue	using
calibra	atior	well	combi	natio	ns acc	ordi	ng t	o pr	eliı	minar	y ev	aluat	tion	me	thod	(Fig	ure 5).

• Offline measurements, - Predicted values based on 2D-Spectra and PLS

CONCLUSION AND OUTLOOK

- Evaluation of bioprocess data quality using unsupervised learning is beneficial for process understanding and interpretation
- Application of supervised methods successful: Prediction of strongly correlated offline values *i.e.* glycerol and pH possible
- Outlook: Modelbuilding for non-biomass related signals such as non-fluorescent product formation

Correspondence:	References:	Acknowledgement:							
¹ Aachener Verfahrenstechnik – Biochemical Engineering	a) Kottmeier 2009, Biotechnol. Bioeng., 104: 554–561. b) Ladner et al. 2016, Biotechnol. J., 11: 1605–1616.	nsensus	$\begin{array}{ccc} & \star & \star \\ & \star & \star$	innovative medicines initiative	efpia				
Forckenbeckstraße 51 D-52074 Aachen	Disclaimer: The communication information of this poster reflects the author's view. Neither IMI nor the European	www.iconsensus.eu	* * *	www.imi.europa.eu					
	Union, EFPIA, or any Associated Partners are responsible for any use that may be made of the information contained within.	We acknowledge the Innovative Medicines Initiative 2 Joint Undertaking [grant agreement No 777397]. This Joint Undertaking, project iConsensus, receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA Partners Sanofi, GSK, Bayer, Rentschler Biopharma, UCB, Byondis and Pfizer.							